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Abstract  

The interaction of light with the gravitational field of a mass point described by a 
Newtonian gravitational field theory gives the same gravitational red shift as accepted 
theory. The dual force which is an integral part of the classical field theory and which has 
been shown to give the same advance of the perihelion of the orbit as Einstein's General 
Theory of Relativity is also the reason that light is deflected in the neighborhood of a 
massive particle. The deflection predicted is slightly more than 10~ larger than 
Einstein's value, but within the experimental error of observational data. The dual 
force and its effects must be taken seriously. Its role in electrodynamics and quantum 
mechanics is briefly discussed, 

1. Introduction 

Newtonian Gravitational Field Theory (Schwebel, 1970) reveals that in 
addition to a counterpart  of  the Lorentz force of  electromagnetic origin 
there is a dual force. The inclusion of the dual force in the equations of  
motion for two bodies led to a number of  interesting results (Schwebel, 
1971). Among these was the advance of  the perihelion of  the orbit of  one 
particle about the other which agreed with the result obtained from Einstein's 
General Theory of Relativity. The present paper extends the application of  
the theory to the motion of light in the gravitational field of  a mass particle. 

We will find that the theory yields the correct gravitational red shift and, 
within experimental error, the observed deflection of  light in a gravitational 
field. The former result is independent of  the dual force, whereas the latter 
is not. The value obtained for the deflection of light is slightly more than ten 
percent larger than Einstein's. 

We will proceed from the set of  equations and relations obtained f rom 
the application of  the theory to the two-body problem (Schwebel, 1971). 
These relations will be altered so that we can identify one of the bodies as a 
photon and take into account the interaction between light and matter. 
Once the pertinent equations have been established, they will be solved 
exactly. Finally, we will discuss the results and their significance, especially, 
for electrodynamics and quantum mechanics. 
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2. Equations o f  Mot ion  

In the notation of an earlier article (Schwebel, 1971), the equations that 
describe the interaction between two massive bodies are: (1) The conser- 
vation of energy relation, 

pz 0 q /L1/~2 _-- E = const.; /z = ~/(-G) m (2.1) 
r 

The conservation of angular momentum equation, 

r x P2 - ~ 1  I~z r/r = L = const. (2.2) 

and the trajectory of one particle relative to the other, 

1 
- -- A[1 + Bsinfl(~ - 40)] (2.3a) 
r 

cos 0 = -~/z I ~2/L (2.3b) 

where the subscripts 1 and 2 refer to the two massive particles; A is a constant 
()t 2 = 5), which is a measure of the strength of the dual force relative to the 
conventional Newtonian gravitational force; P2 andp2 ~ are the components 
of the four-momentum of particle two; A, B and/3 are as follows: 

A = (/~l/Z2 E)/(/Zl 2/-t2 2 - -  L2 sin2 0) 

B = [m22 + )t 2 tan 20(E 2 -- m22)]l/2/E 

/3 = [sin 2 0 - (cos 2 0/A2)] 1/2 
a n d L =  ILl. 

We identify particle two with the photon. This requires that, in the above 
equations, we set 

[p21 = by, p z  o = hv (c = 1), m2 -- 0 

and, for the photon, we must have 

p2 __p02 = 0 (2.4) 

In what foUows, the subscript two will be dropped in order to indicate that 
the massive particle two has been replaced by a photon. 

3. Gravitational R e d  Shi f t  

Performing the indicated changes on equation (2.1) we find that it reduces 
to 

hv - ( G m l / r ) m  = hv + ~bm = E (3.1) 

where ~----(-Gml/r)  is the gravitational potential due to the massive 
particle. The m which appears in the equation is the effective mass of  the 
photon determined from the relation E = m(e -- 1). 
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Equation (3.1) is a well-known starting point for the derivation of the 
gravitational red shift (Adler et al., 1965). Note that the dual force plays no 
role in the determination of  the red shift. All that is required is the conser- 
vation of energy and the properties of  the photon. 

4. Deflection o f  Light 

The dual force does play an all important role in the deflection of light 
in a gravitational field. To see this, let us introduce a rectangular coordinate 
system with its z-axis parallel to L. Equation (2.2) can be expressed in 
component form in such a coordinate system and solved. The results of the 
straightforward algebraic calculations are: 

-1(y x (4.1a) 
P~= zr + z  p~' 

KX 
py = ~ + Y- p. (4. lb) 

z r  z 

and 
z/r = K/L (4. l c) 

where 1( -- ~Gml m and L = ]L I. The last equation can also be obtained by 
taking the scalar product of  equation (2.2) with r. Then equation (4. lc) takes 
the form cos0 = 1(/L which is identical to equation (2.3b). The angle 0is  
between the radius vector r and the z-axis. Equation (4. lc) describes the 
trajectory of  the photon as lying on the surface of a cone whose vertex is 
occupied by the massive particle and whose axis is parallel to L. The semi- 
angle of  the cone is 0. 

From equations (4.1a, b, c) we obtain 

L 2 _ i( 2 L z 
p 2  = r 2 + ~ p2  (4.2) 

Using equations (2.1), (2.4) and (4.2), we find that 

1(2 
pz 2 =~$-r2rZ [(Er + Gm, m) 2 - (L 2 - 1(2)1 (4.3) 

It follows from equation (4.2) that for r -+ ~ we have 

1( 
lim (p,/p) = 4- • = • cos 0 r -+ ~ (4.4) 

Therefore the vector p - - the  momentum of  the photon--must  lie along a 
generator of  the cone, the radius vector, when incident from infinity or 
receding to a great distance relative to the particle at the apex. In other 
words, the photon on incidence is directed towards the apex of the cone and 
on emergence, i.e., at a great distance from the massive particle after 
interacting with it, is directed away from the apex along the radius vector. 
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I f  there is no azimuthal component (and we shall show that there is such a 
deflection but it is negligible) then the total deflection of the light is zr - 20. 

I f  we let ~ = (7r/2) - 0, it follows from equation (4. lc) in which (z/r) = cos 0 
and r/L ~ 1 that ~ = K/L and that the total deflection is 

2~ = (2)tGml m)/L 

To evaluate 2~ we must determine L. From equation (2.2), we see that 
[r • p[ = (L e - K2} 1/2 

~ L  

Since ~:/L < 1. The closest distance of approach, r(min), of  the photon to 
the massive particle occurs when Pz = 0. At that point r is perpendicular to 
p, the momentum of the photon, and can be calculated from equation (4.3). 
It  follows that for a photon L = r(min), hr. With this value for L and with 
m = hv we find that 

Gml 
2~ = 2V'(5) r E  ) (4.5) 

Einstein's result for the same quantity is 4Gml/r(min). The ratio of  these 
values is 2V3/4 = 1.118. 

The azimuthal contribution to the deflection of the light can be calculated 
from equation (2.3a). When r becomes infinite, we see that 

1 
sin f l ( 4  - 4 0 )  = - 

For the photon B = ~tan 0 = sin O/(Grnl m/L). We have seen that Gml m/L 
is a very small quantity. Therefore, it follows that 

1 Gml rn 
( 4  - 40) fib /3 sin OL 

~Gml m 
L 

since/3 ~ 1 and sin 0 ~ 1. 
In the absence of the dual force the trajectory of the photon lies in a plane, 

and its deflection would be given by 2( 4 - 40) ~ 2Gin1 roll which reduces to 
2(4-4o)=2Gml/r (min  ). This result is the one usually obtained by 
conventional classical approaches to this problem (Kittel et al., 1965). The 
present theory adds the complexity that the trajectory of the photon lies on 
the surface of a cone and not in a plane. The deflection of light, as we have 
stated above, would be 7r - 20 if there were no deflection in the azimuthal 
plane. Due to the azimuthal deflection there is a change in the angle of  
deflection of the second order in (4 - 40) which is negligible. The exact 
relation between the semi-angle of  the cone, 0, and the semi-angle, o~, 
between the radial vectors to the incident and emerging direction of the 
photon is 

sin ~o = sin 0 cos (4 - 40) (4.6) 
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Because 4 - 40 is small, it follows that co and 0 are equal at least to the 
second order in 4 -  40. If  0 = zr/2, i.e., the dual force is not taken into 
account, then oJ = (zr/2) - (4 - 40) and the deflection of the light occurs in 
the surface of a plane and is equal to 7r - 2~o = 2(4 - 40)- A result which we 
pointed out before is obtained in most classical solutions to the problem. 

5. Discussion 

An earlier study (Schwebel, 1971) showed that the inclusion of  the dual 
force in the equations of motion predicted the same analytical result for the 
advance of  the perihelion of  the orbit of one particle gravitating about a 
second particle as Einstein obtained from the General Theory of  Relativity. 
The present analysis shows that the same dual force is responsible for the 
observed deflection of light in a gravitational field. 

The significance of the above results is not only that they demonstrate that 
significant experimental data are predicted, but also that an integral part of 
a classical field theory, the dual force, accounts for the observations. We 
conclude that the dual force must be taken seriously; it must be included in 
all theoretical analyses of  phenomena by electromagnetic theory and 
quantum theory. 

More specifically, we have pointed out (Schwebel, 1970) that a dual 
electromagnetic force exists. Among the equations of motion which describe 
the electromagnetic interactions between two charged particles, we find an 
equation analogous to equation (2.2). Thus we will find an intrinsic angular 
momentum of  constant magnitude as a consequence of incorporating the 
dual force into the equations of motion. The intrinsic angular momentum is 
proportional to e2/c or to ~h where c~ is the fine structure constant. 

The last conclusion shows the importance of exploring the effects of the 
dual force in the framework of quan tum theory. The transcription of  
equation (2.2) into quantum mechanical terms seems to hold the promise of  
explaining the anomalous magnetic moment of the electron-proton system 
as due to the heretofore neglected dual force. Work that has been done along 
these lines will be submitted for publication in the near future. 
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